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15N off-resonance rotating frame relaxation can be applied to tematic deviations of R2 , and the relaxation contribution due
the study of internal dynamics in proteins in the millisecond to to chemical exchange can be estimated from its proportional-
microsecond regime. We show that the performance of existing ity to the square of the static field strength (2) . A disadvan-
methods can be improved by application of simultaneous ampli- tage of this method is obviously the collection of data from
tude and phase-modulated adiabatic RF pulses to align the nuclear different NMR spectrometers, which may not be accessible.
spin magnetization with the off-resonance spin-lock field for all

Other methods exploit the dependence of relaxation duethe spins under investigation. Application of this technique to the
to chemical exchange in the presence of a continuously ap-269-residue serine protease PB92 allowed the measurement of 15N
plied RF field (5, 6) . This makes it possible to study molecu-off-resonance rotating frame relaxation rates for all nonoverlap-
lar motions as a function of more easily accessible and moreping residues in the protein, including the arginine side chains,

encompassing a chemical shift range of 50 ppm. Simulations indi- reproducible experimental parameters and to sample a larger
cate that by use of the proposed adiabatic RF pulses rotating frame number of points on the spectral density of the intermediate
relaxation rates can be obtained for magnetization vectors aligned time scale motion. The theoretical framework devised by
at arbitrary angles with the static field. q 1998 Academic Press Deverell et al. (6) is often used, which applies to data ob-

Key Words: NMR; protein dynamics; off-resonance relaxation; tained from spin-lock measurements performed under on-
adiabatic pulses; chemical exchange.

resonance conditions for each individual spin. Szyperski et
al. (7) , for example, applied such an approach to study a
millisecond time scale event in the protein BPTI, attributedINTRODUCTION
to the isomerization of a disulphide bridge. However, it is
clearly not possible to simultaneously satisfy the on-reso-With the advent of isotopic enrichment and the develop-
nance condition for all 15N nuclei in a protein. Furthermore,ment of proton detected heteronuclear NMR the measure-
probe and sample overheating limits the spin-lock fieldment of 15N nuclear spin relaxation times has provided a
strength that can be used in practice and thereby poses awealth of information on intramolecular dynamics in pro-
limit on the time scale that can be assessed by on-resonanceteins (1, 2) . In particular, 15N R1 , R2 and 15N{1H} hetero-
rotating frame relaxation. The above limitations can be alle-nuclear NOE have been measured to provide information
viated, however, by spin-locking the magnetization off-reso-about fast (picosecond to nanosecond) internal dynamics of
nance. First, the requirement that the RF field is applied on-the protein backbone. In contrast, relatively few experiments
resonance is no longer relevant. Second, the increase in thefor measuring motions on intermediate (microsecond to mil-
effective field strength allows the investigation of faster pro-lisecond) time scales have been developed or applied to
cesses. In practice, off-resonance relaxation rates R1r can beproteins. Research in this area has mainly focused on chemi-
determined at multiple values of the effective field by varia-cal exchange which constitutes a mechanism of relaxation

as the chemical shift is rendered time dependent (3) . Ex- tion of offset and/or amplitude of the off-resonance spin-
change on the microsecond to millisecond time scale mani- lock field. From the field dependence of the relaxation rate,
fests itself by a contribution Rex to the spin–spin relaxation information about motions at frequencies on the order of
rate, which can in principle be derived from an anomalous ve Å

√
(v 2

1 / Dv 2) is obtained (8–10) .
increase in values of R2 or R1r (4) . When data are obtained Application of 15N off-resonance rotating frame relaxation
at multiple static field strengths it is possible to detect sys- to the study of internal dynamics in proteins has recently

been proposed by Akke and Palmer (10) . In their method,
part of which is reproduced in Fig.1A, the relaxation is mea-1 To whom correspondence should be addressed. Fax: -31-30-2537623.

E-mail: boelens@nmr.chem.ruu.nl. sured after alignment of the nuclear spin magnetization with
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FIG. 1. Pulse sequences for measuring off-resonance rotating frame relaxation. Narrow (filled) bars and wide (open) rectangles represent 907 and
1807 pulses, respectively. Unless indicated, the pulses are applied along the x axis. The large shaded bar represents the low power off-resonance spin-
lock pulse. Panels (A) and (B) represent building blocks using chemical shift precession and adiabatic pulses, respectively. The upper traces, labeled
‘‘rf,’’ represent high power (filled and empty bars) and low power (shaded bar) RF pulses. The lower trace, labeled ‘‘freq,’’ represents the variation of
offset frequency of the RF pulses. At points a and b in the pulse sequence the RF power and frequency are switched to apply the off-resonance spin-
lock field. (A) For chemical shift precession the delay z and pulse angle u are optimized as outlined in (10) . Frequency switching needs to be executed
phase coherently or, alternatively, the off-resonance spin-lock pulse may be frequency modulated. (B) In the case of adiabatic rotations the delay t is
chosen to satisfy the adiabatic condition. The frequency sweep is executed during the RF pulse and frequency switching does not need to be carried out
phase coherently. (C) Pulse scheme of the off-resonance rotating frame relaxation experiment using adiabatic rotations. The delay D was chosen
(4JNH)01 , compensated for relaxation losses where appropriate. To eliminate relaxation pathways due to cross-correlation (17, 18) the delay d was
chosen to center the proton 1807 pulse for mixing times less than 10 ms, and 2.5 ms for longer relaxation delays. The delay t for the adiabatic rotations
was 4 ms, and the relaxation delay T varied from 2 to 200 ms. The following phase cycling was used: f1 Å 4(y) , 4(0y) ; f2 Å (x,0x) ; f3 Å 2(y) ,
2(0y) ; f4 Å 2(0x) , 2(x) ; frec Å (x,0x,0x,x,0x,x,x,0x) . Heteronuclear decoupling during acquisition was achieved using GARP. For each t1 increment
axial peaks were shifted to the sides of the spectrum by inversion of f2 in concert with the receiver phase, similar as in States–TPPI. All sequences
employ sine-bell shaped pulsed field gradients (PFG) along the z axis. To yield absorption mode spectra P- and N-type coherence selection is achieved
by inversion of gradients G1 and G2 in concert with inversion of f4 for each t1 increment. Sensitivity enhancement is achieved by preservation of
equivalent pathways in conjunction with pulsed field gradients (19, 20) . The duration of all gradients was 800 ms, followed by a 400-ms recovery delay.
Gradient strengths were G1 Å 07.5 G cm01 ; G2 Å 75.0 G cm01 ; G3 Å 0.075 G cm01 ; G4 Å 00.1125 G cm01 ; G5 Å 8.36055 G cm01 . Phase f1 is
alternated to ensure exponential decay to zero intensity, as the steady-state value due to 1H– 15N NOE is subtracted in successive scans. Adiabatic-shaped
pulses typically contained 4k to 8k complex points and were generated by a small C-program. The modulation functions employed are described in the
legend to Fig. 2. The frequency sweep was 25 kHz.

the effective field by a combination of high power RF pulses to off-resonance rotating frame relaxation experiments (vide
infra) . Mismatch of the magnetization with the effectivealternated with periods of evolution due to chemical shift

offset. In the past such ‘‘chemical shift precession methods’’ field for resonances that are not close to the carrier frequency
will lead to oscillatory behavior of the magnetization duringhave been reported to be successful in alignment of magneti-

zation with the effective field in compensated ROESY (11) the relaxation delay. Although the magnetization not aligned
with the effective field will eventually be destroyed by theand in improved on-resonance spin-lock measurements

(12) . However, the presence of large chemical shift disper- inhomogeneity of the B1 field, oscillations may persist for
considerable time, precluding the use of short relaxationsion hampers the applicability of such preparation schemes
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delays. Moreover, only the projection of the magnetization
onto the effective field and the back projection onto the z
axis will be measured with concomitant loss of sensitivity.

We propose here to use simultaneous amplitude- and
phase-modulated RF pulses to adiabatically rotate nuclear
spin magnetization to the appropriate effective field in off-
resonance rotating frame relaxation experiments. The adia-
batic off-resonance spin-lock pulse is presented in Fig. 1B
and consists of three components: an adiabatic passage to
tilt the magnetization from the z axis to the effective field,
an off-resonance spin lock period of variable length, and a
second adiabatic passage to return the magnetization to the
z axis. Similar approaches have been described previously
for off-resonance ROESY (13) and for the measurement of
rotating frame relaxation times on-resonance, using ampli-
tude and phase modulation to achieve an adiabatic half-
passage (14) . For the desired adiabatic rotation we advocate
the use of RF pulses with simultaneous hyperbolic tangent
amplitude and tangent frequency modulation as presented in
Fig. 2A. This particular set of modulation functions closely
approximate numerically optimized ones (15, 16) . Figure
2B shows simulated excitation characteristics of a 4-ms tanh/
tan pulse of 2000 Hz field strength, indicating that satisfac-
tory adiabatic rotation can be achieved for all spins resonat-
ing at frequencies higher than 01000 Hz from the position
of the off-resonance field. Alternatively, a change in the sign
of the frequency-modulation will result in the mirror image
of Fig. 2B, allowing spins resonating at frequencies lower

FIG. 2. (A) Profiles of amplitude (dashed) and offset frequency (full)than 1000 Hz to be adiabatically aligned with the off-reso-
of the tanh/tan adiabatic pulse as a function of pulse duration t . The em-nance field. Thus, by use of the proposed adiabatic RF pulses
ployed modulation functions were v1( t ) Å v0

1tanh(10t /t) and Dv( t) Åthe nuclear spin magnetization can be aligned at arbitrary
Dv 0[ tan(atan(50)[1 0 t /t])] /50, for amplitude and frequency, respec-

angles with the static field. tively, where t is the adiabatic pulse length, v0
1 is the spin lock field strength,

and Dv 0 is the initial frequency offset. (B) Offset excitation profile for
the adiabatic pulse (A) of 4 ms duration and 2000 Hz field strength. DashedRESULTS AND DISCUSSION
and full curves represent projections Mz and Mxy Å

√
(M2

x / M2
y ) , respec-

tively, of the nuclear spin magnetization after adiabatic rotation. GoodNumerical simulations of the Bloch equations were carried
adiabaticity is achieved for all spins resonating at frequencies higher thanout to compare the performance of chemical shift precession
01000 Hz from the position of the off-resonance RF field. Simulations

and adiabatic alignment schemes. Figure 3 shows projections were performed with Pulsetool (Varian, Palo Alto) .
Mz and Mxy Å

√
(M2

x / M2
y ) of a simulation of the trajectory

of the nuclear spin magnetization of 2 ms in the presence of
an off-resonance RF field, applied 2000 Hz from the center termined by the degree of angular mismatch of the two vectors

and the precessional frequency around the effective field givenof the 15N spectrum, after chemical shift precession (3a–3c)
or, adiabatic rotation (3d–3f) to align the magnetization with by ve . It is shown that by adiabatic alignment the amplitude

of the oscillations is greatly reduced for spins that are off-the effective field. Preparation by chemical shift precession
was performed as described by Akke and Palmer (10). Adia- resonant with respect to the nitrogen carrier frequency.

The pulse sequence to measure 15N off-resonance relax-batic pulses were as described in the legend to Fig. 2. Panels
3a/3d represent spins resonating 1000 Hz from the carrier ation using adiabatic rotations is presented in Fig.1C. Similar

schemes can be derived from any pulse sequence used tofrequency—taken as the center of the 15N spectrum—(u Å
33.77), panels 3b/3e represent spins resonating exactly at the measure 15N R1 , with an off-resonance spin-lock period re-

placing the relaxation delay. The adiabatic off-resonancecarrier frequency (u Å 45.07), and panels 3c/3f represent
spins resonating 01000 Hz from the carrier frequency (u Å spin-lock pulse is programmed as an adiabatic half passage

(AHP), an on-resonance spin-lock, and and a time-reversed63.47). Any oscillations are a result of misalignment of the
magnetization with the effective field, with an amplitude de- AHP. Offset switching (points a and b in the pulse sequence)
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FIG. 3. Trajectories of the nuclear spin magnetization subject to an RF field applied off-resonance after different preparation schemes to align the
nuclear spin magnetization with the off-resonance spin-lock field. Projections Mz (dashed) and Mxy Å

√
(M2

x / M2
y ) (full) of the nuclear spin magnetization

are shown after (a–c) alignment by chemical shift precession (d–f) alignment by adiabatic rotation. The field strength of low and high power RF pulses
was 2 and 10 kHz, repectively. The off-resonance field was applied 2000 Hz from the center of the nitrogen spectrum. Panels (a) and (d) represent
spins resonating 01000 Hz from the center of the spectrum, panels (b) and (e) represent spins resonating exactly at the center of the spectrum, panels
(c) and (f ) represent spins resonating 1000 Hz from the center of the spectrum. Simulations (a–c) are based on the pulse scheme devised by Akke and
Palmer (10) (cf. Fig. 1A), simulations (d–f) are based on the tanh/tan adiabatic pulse (cf. Figs. 1B and 2). Simulations were performed with Pulsetool
(Varian, Palo Alto) .

may be executed by changing the nitrogen carrier frequency resonating close to the 15N carrier frequency are equally
intense in both spectra but in Fig. 4A the intensity fallsor by additional frequency modulation. Frequency coherent

offset switching or calibration of relative phases between with increasing offset due to successive projections of the
magnetization. On the other hand, in Fig. 4B the intensityhigh power and lower power RF pulses is not required since

the relevant nitrogen magnetization is longitudinal at the is retained over the entire spectral width. The difference is
particularly manifest for the folded arginine side chain N estart and finish of the off-resonance spin-lock period. The use

of laminar shaped pulses should be feasible on commercially (indicated with a box), which resonates approximately 30
ppm from the nitrogen carrier frequency.available spectrometers, provided enough RF wave form

memory is available. Application of the adiabatic off-resonance rotating frame
relaxation experiment to the 269-residue serine proteaseAdiabatic off-resonance and chemical shift precession

alignment strategies were compared experimentally by plac- PB92 allowed relaxation rates to be obtained for almost all
15N nuclei in the protein. This represents a demanding exam-ing the building blocks of Figs. 1a and 1b between the 15N

pulses with phases f1 and f2 of the sequence presented in ple as the 15N resonances are spread over a chemical shift
range of 50 ppm, from the side chain N e of Arg 19 at 87.1Fig. 1c. With the element of Fig.1a this essentially yields

the pulse scheme of Akke and Palmer (10) , elaborated to ppm to the backbone amide of Leu 31 at 137.1 ppm. Repre-
sentative 15N off-resonance relaxation curves are presentedinclude sensitivity enhancement in conjunction with pulse

field gradients for coherence selection (20) . However, in- in Fig. 5. The off-resonance RF field was applied at 87.3
ppm, 02000 Hz from the center of the 15N spectrum (120.2stead of phase-coherent frequency switching a phase-modu-

lated off-resonance spin-lock pulse was used. Two-dimen- ppm) with a field strength of 1830 Hz. The relaxation curves
show no detectable oscillations and low residuals in nonlin-sional 1H– 15N correlation spectra obtained with the two off-

resonance rotating frame relaxation experiments are shown ear least-squares fitting to a single exponential, indicating
good alignment with the effective field. The 15N off-reso-in Fig. 4. In accordance with the simulations of Fig. 3 amides
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FIG. 4. Two-dimensional 1H– 15N correlation spectra obtained with off-resonance rotating frame relaxation measurements. The folded arginine side
chain N e are indicated with boxes. Spectrum (A) was obtained using the building block Fig.1A, replacing the adiabatic off-resonance spin-lock pulse in
pulse scheme Fig.1C. Spectrum (B) was obtained using pulse scheme Fig.1C. NMR experiments were performed on a Varian500 UnityPlus spectrometer,
operating at 377C on a 1 mM sample of uniformly 15N-labeled human colipase pH 4.65 in 93/7 H2O/D2O v/v. The spin-lock field strength employed
was 1300 { 30 Hz, and the off-resonance RF field was placed 0500 Hz from the carrier frequency. The relaxation delay was 10 ms. Spectra were
processed using the in-house developed software package TRITON and NMRPipe (21) .
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